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We report our experimental study on spiral instabilities in an open spatial reactor using the Belousov-
Zhabotinsky (BZ) reaction. A phase diagram showing different regimes of spiral dynamics is built. Two
instabilities are identified in the phase diagram: the Doppler instability and the long wavelength instability.
Both instabilities lead the system to a state of spatiotemporal chaos or chemical turbulence. In the regime of
the Doppler instability, spiral waves break near the spiral core, when a Hopf bifurcation contributes to the
spiral core, making the latter meander; in the regime of the long wavelength instability, a sustained long-
wavelength modulational spiral appears and is stable in a range of control parameters. At the same time, the
trajectory of the spiral tip changes from circular to epicycloid, which is very similar to a meandering spiral.
The essential difference to distinguish meandering spirals from those with long wavelength modulations is
that the convective velocity of the former is zero, while the latter is nonzero. Beyond that range of the control
parameter, spiral waves break and the system undergoes a transition to chemical turbulence.

Introduction

In recent years, study of spiral dynamics has attracted a great
deal of attention from researchers in different fields, such as
nonlinear physics, mathematics, physical chemistry, biology, and
cardiology. There are several reasons for these attractions. From
a practical point of view, it is believed that a spiral performs
an essential role in cardiac arrhythmia and fibrillation,1-3 so
understanding spiral dynamics has a promising application
potential in cardiology. From theoretical point of view, the
dynamics of spiral waves is dominated by its tip’s movement,
which can be considered as a topological defect. Study of spiral
behavior will give hints about the defect dynamics. Moreover,
transitions from ordered spiral waves to defect-mediated tur-
bulence have been well-studied in theory4-8 and observed both
in experiments9-12 and numerical simulation.13-16 This is one
of the most promising routes to investigate spatiotemporal chaos,
which are poorly understood at present.

The dynamical behavior of spiral waves in an excitable
medium is governed by a dispersion relation that relates the
speed to the period of the traveling waves. In general, the speed
depends on how rapidly a local system recovers its quiescent
state after being excited; hence, it is an increasing function of
the period of waves.17 There exists a minimum period below
which the system cannot recover to its excitable state and
traveling waves cease to exist.17,18Usually, the period of regular
spiral waves is larger than the minimum period; thus, spiral
waves are stable. On the other hand, stable single spirals are
two- or three-dimensional structures. Their rotating frequency
and speed are influenced by the wave front curvature, so they
obey the constitutive relation.17 It is the two relations that
determine the dynamical behavior of spiral waves, that is, the
relations between their speed, wavenumber, and frequency.

A spiral head (or tip) is considered as a wave source, a wave
being sent out after the head moves one circle. Therefore the
spiral head movement includes abundant information about the
behavior of a spiral, and its dynamics is possibly the key to

interpret the behavior of spiral waves. For example, the
meandering phenomenon of a spiral can be explained by a Hopf
bifurcation contributing to the spiral tip.19 Several models have
been proposed to study the relation between the wavelength of
a spiral and its core size, in turn the relation between the speed
of the wave front and that of the spiral tip, such as the one
describing the spiral movement by analogy with the combustion
of grass,20 or a more complete analysis of excitable reaction-
diffusion media.21

Recently, two important spiral instabilities were experimen-
tally found in a quasi-two-dimensional spatial open reactor using
the Belousov-Zhabotinsky (BZ) reaction, the Doppler instabil-
ity12 and the long wavelength instability,9,22which result in spiral
wave breakup and chemical turbulence. The cause for the former
is a Hopf bifurcation contributing to the spiral core, which
creates the spiral meandering. Tracing the movement of the
spiral tip, one can find that the trajectory of the tip changes
from a single circle to a flower with the control parameter varied.
Due to the Doppler effect, with sufficiently large meandering,
defects can be generated when two adjacent wave fronts near
the core are too close, so the local wavelength is beyond the
critical value allowed by the dispersion relation. This kind of
instability possibly accounts for cardiac fibrillation.23 When the
latter, long-wavelength instability takes place, apparent spatially
modulated waves emerge, so the distance between successive
wave fronts (the local wavelength) varies spatially. As the
amplitude of modulation increases with control parameters,
spiral waves break.

In this paper, after introducing the experimental setup in the
Experimental Section, we present our systematic studies of
dynamical behaviors of spiral waves and spiral instabilities. A
phase diagram with sulfuric acid and malonic acid as control
parameters is built, and the lines of onsets for the Doppler
instability and the long wavelength instability are identified.
Both instabilities lead to chemical turbulence, but they show
different phenomena and have different mechanisms. The
following two sections describe the dynamical behavior of these
two instabilities, respectively. At the end of the paper, we give
some discussions.* Correpondent author. E-mail: qi@mail.phy.pku.edu.cn.
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Experimental Section

Our experiments are conducted in a spatial open reactor24

using the ferroin (Fe(phen)3
2+) catalyzed BZ reaction. The heart

of the reactor is a thin porous glass disk (Vycor glass, Corning),
0.4 mm thick and 19.0 mm in diameter, which has 25% void
space and 100 Å average pore size. The porous glass is used to
prevent convection in the reaction medium. Each surface of the
disk is in contact with a compartment where the reactant
concentrations are kept homogeneous and constant by highly
precise pumps and magnetic stirrers. The chemicals are fed
asymmetrically: malonic acid and potassium bromide are fed
on side A, sulfuric acid and ferroin are fed on side B, sodium
bromate is fed on both sides, so that side A is kept fixed in a
reduced state and side B in an oxidized state. Both sides are
kept from oscillating. The chemicals diffuse into the porous
glass, where the BZ reaction occurs and patterns form. Because
multiple chemical gradients exist across the reaction medium,
our system is in fact quasi-two-dimensional. However, previous
studies25,26 show that if the boundary conditions are uniform,
the quasi-two-dimensional system with gradients in the third
dimension (like our experimental setup) behaves qualitatively
like a two-dimensional system.

In our experiments, although we use magnetic stirrers to mix
reactant solutions in the compartments, we cannot guarantee
that the boundary conditions of the reaction medium are
perfectly uniform. However, after estimating the magnitude of
perturbations that diffuses from the surfaces to the middle of
the disk, we find that a perturbation at the boundaries has very
little effect in the patterned layer. Our line of reasoning is the
following: Suppose the perturbation to a homogeneous steady
state is an oscillation with frequencyω, i.e., c(x,t) ) A exp(-
iωt), wherex points to the transverse direction andω ∼ 1 s.
Consider the simplest diffusion equation

whereD⊥ is the transverse diffusion constant across the porous
glass, which is measured asD⊥ ≈ 7 × 10-7 cm2/s,27 and then
we can get the asymptotical distribution of the perturbation:

The thickness of the porous glass isd ≈ 0.04 cm. Suppose the
patterned layer is in the middle of the reaction medium, then
the perturbation will decay exponentially to exp(-17), about
10-8 smaller than that in the boundaries. Such a small
perturbation has little impact on the behavior of a spiral inside
the porous glass. However, if a pattern is formednot in the
middle of the disk but near the surface, this perturbation can
strongly affect the spiral locally. From our observation, this case
occurs under the conditions of higher concentration of malonic
acid ([MA] > 1.5 M), which is far beyond our experimental
conditions.

In the experiment, a helium-neon laser (1 mW,λ ) 633
nm) is used to generate and guide spirals.28 When a spiral is
guided to the boundary of reaction medium, it is absorbed and
disappeared. Thus initial conditions can be chosen such that
only one spiral resides in the middle of the system. Once a spiral
is prepared, it is studied by increasing or decreasing one of the
chemical concentrations in a stepwise fashion while the others
are fixed. Enough time is allowed between changes so that the
system can relax to its new asymptotic state. The typical waiting

time is about 1 h. The reactor is illuminated by a blue light
source (about 550 nm). Images of the patterns are taken by a
charge coupled device (CCD) camera and then digitized and
stored in a computer for later processing.

Phase Diagram

A previous study29 shows that the dynamics of spiral waves
is most sensitive to three control parameters: the concentrations
of sulfuric acid ([H2SO4]), malonic acid ([MA]), and sodium
bromate ([NaBrO3]). At low [NaBrO3], we find the phenomena
that we are interested in happening at high [H2SO4] (>1 M).
Such a high concentration of H2SO4 makes patterns unclear and
can erode the chemical pumps, so we fix [NaBrO3] ) 0.6 M
and choose [H2SO4] and [MA] as control parameters. Other
reactant concentrations of the BZ reaction are kept fixed: [KBr]
) 0.03 M, [ferroin]) 0.15 mM. The experimental temperature
is 25 ( 0.5 °C.

Figure 1 gives a slice of the phase diagram using [MA] and
[H2SO4] as control parameters. About 80 different points are
studied and categorized. The phase diagram can be divided into
several domains, and each is labeled according to the observed
patterns: simply rotating spiral (S), meandering spiral (M),
chemical turbulence due to the Doppler instability (D), con-
vectively unstable spiral (C), and chemical turbulence due to
the long wavelength instability (T). The solid lines give the
onsets for several types of instabilities of spirals. Figure 2 shows
examples of the ordered or disordered patterns in different
regimes.

The S-M boundary in the phase diagram defines a transition
from simple spirals to meandering spirals. At the onset, the spiral
tip undergoes a Hopf bifurcation.28 As a result, the trajectory
of the tip changes from a simple circle to an epicycloid or a
hypocycloid, and the local behavior of the spiral waves changes
from periodic to quasi-periodic. In the meandering state, due
to the Doppler effect, the tip of a spiral emits waves that are
compressed in front of the tip and dilated behind the tip. Thus
the local wavelength of spiral waves is no longer constant but
changes periodically between a maximum and a minimum value.
The ensemble of local maximum wavelength forms a super-
spiral, as can be observed in Figure 2b. If one continues to
decrease [MA] or to increase [H2SO4] to cross the M-D
boundary (see Figure 1), the Doppler instability will take place

∂c(x,t)
∂t

) D⊥
∂

2c(x,t)

∂x2

c(x,t) ) A exp(-x ω
2D⊥

x) exp[i(x ω
2D⊥

x - ωt)]

Figure 1. The phase diagram studied in our experiments with [MA]
and [H2SO4] as the control parameters. The solid lines indicate the
onsets of different instabilities. The dashed lines are the extrapolation
of the solid lines. The dotted line separates two types of modulational
spirals (see text).
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and defects are perpetually generated near the spiral heads, until
chemical turbulence occupies the whole reaction medium. An
example of this turbulent state is shown in Figure 2c. We will
describe this phenomenon in detail in the next section.

The C regimes in the phase diagram represent regions where
spiral waves undergo a long wavelength instability that has a
convective nature (see the note30 in the references). Before the
onset, one observes a stable simple rotating spiral (Figure 2a).
At the onset of the instability (S-C boundary in Figure 1), a
long-wavelength modulated spiral appears upon the carrier
waves, as shown in Figure 2d. This modulation spiral seems
stable within our finite size of reaction medium. Beyond the
onset, defects can be generated far away from the spiral center.
However, due to the convective nature of the instability,31 stable
modulated waves can exist in a finite size, surrounded by a
defect sea; see Figure 2e. With the increase of [H2SO4], the
stable modulated waves are encroached upon by a sea of defects,
till it fully disappears when the control parameter crosses the
C-T boundary in the phase diagram. As a result, the chemical
turbulence in the whole reaction medium forms; see Figure 2f.
The middle dotted line in the C regimes separates two parts,
C1 and C2, which respectively represents two types of dynamical
behaviors of the modulation waves. In one type, the modulation
period decreases with the control parameter; in other type, it
increases with the control parameter. One example is given in
Figure 3, which is made by fixing [MA] (0.8 M) and varying
[H2SO4]. In Figure 3a, the descent rates of the carrier waves’
periods (Tc) as a function of [H2SO4] have different values,-7.7
and -2.7 s M-1, respectively; in Figure 3b, one observes a
turning point of the modulation period (Tm) as a function of
the control parameter.

Doppler Instability

When [MA] is selected to be 0.4 M, the Doppler instability
occurs as [H2SO4] is increased to pass a critical value (about
0.6 M); hence, the system undergoes a transition from a
meandering spiral to a state of defect-mediated turbulence or
chemical turbulence. Figure 4 illustrates the development of this
instability. At the beginning, only one spiral tip exists in the

whole reaction medium, and its movement follows a epicycloid
path (see Figure 4a). When the spiral tip meanders too close to
its adjacent wave, the region near the tip touches and breaks
the wave, generating a couple of defects, as shown in Figure
4b. These defects tend to meander away from one another and
form rotating rotors (Figure 4c). As they do, the same process
happens again. As time elapses, the number of the defects grows
(Figure 4d-f), and the area of the disorder becomes wider until
spiral defects saturate the whole system. We thus observe the
spiral turbulence.

The instability leading to the spiral turbulence is caused by
the Doppler effect on the spiral waves,12 which is induced by a
Hopf bifurcation contributing to the spiral tip and making it
meander. As stated in the previous section, the Doppler effect
makes a periodic variation of the local wavelength of the spiral
waves. As the amplitude of meandering increases with the
increase of control parameter ([H2SO4] in this experiment), the
minimum and the maximum local wavelength diverge; the

Figure 2. Examples of different patterns observed in the experiment: (a) a single spiral (S), (b) a meandering spiral (M), (c) a state of chemical
turbulence due to the Doppler instability (D), (d) a modulational spiral due to the long wavelength instability (C1), (e) the coexistence of a modulational
spiral and chemical turbulence (C2), (f) a state of chemical turbulence due to the long wavelength instability (T).

Figure 3. Two types of dynamical behaviors for the long wavelength
instability. The dash line is at [H2SO4] ) 0.7 M.
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minimum local wavelength becomes smaller, and the maximum
is larger. As the control parameter crosses a critical value, the
minimum local wavelength becomes lower than the minimum
wavelength defined by the dispersion relation. Under this
circumstance, a local spiral wave will change from stable to
unstable and break into defects. Because of the dispersion
relation, the difference of the minimum and the maximum
wavelength will decrease as the spiral waves travel outward,
so the most vulnerable region in a spiral is the area near the
spiral tip. That is why the breaking point always occurs near
the spiral core.

To summarize, the spiral breaking process for the Doppler
instability is as follows: As the spiral tip moves toward its
adjacent wave, making the local wavelength beyond the
dispersion relation because of sufficiently large meandering,13

it breaks the wave and generates a pair of defects. The newly
generated defects drift apart and self-organize into new spiral
rotors, which meander in the same way as their mother. Once
it is formed, it has the chance to generate new defects.
Repeatedly, daughter spirals give birth to granddaughter spirals,
so that more and more defects emerge until the system is
saturated with spiral defects. At last we observe a state of
chemical turbulence.

Long Wavelength Instability

Different from the Doppler instability, which leads to defects
generated near the tip of a spiral, long wavelength instability
creates defects appearing far away from the tip of spiral waves.
In this section, we give some quantitative properties of this
instability.

After the long wavelength instability occurs, apparent spatially
modulated waves emerge so that the distance between successive
wave fronts (the local wavelength) varies spatially, as shown
in Figure 2d. The wavelength ratio of modulational and carrier
waves is about 5, thus the instability is a long wavelength type.
Figure 5 shows the variation of the local wavelengths. In the
figure, the origins are set at the point of the spiral tip, and each
point (solid square) corresponds to the local minimum or
maximum amplitudes of the modulational spiral waves in the
radial direction. One observes that the local wavelengths show
periodic variation; both the average amplitude and the wave-
length of phase modulation increase with the increase of [H2-
SO4], which means that the modulation becomes more obvious.

Notice that the amplitudes of phase modulations are almost
constant with the distance. Thus the perturbations to carrier spiral
waves are saturated, and stable long-wavelength modulated
spiral waves exist in our system.

The local wavelengths of a meandering spiral also periodically
vary with the distance from the center of the waves, as shown
in Figure 2b. However, there exists one qualitative difference
between meandering spiral waves and modulational waves due
to the long wavelength instability. If we follow one wave front
with the speed of the carrier waves, for meandering spiral waves
its local wavelength is almost constant with time, while for the
long wavelength instability the local wavelength varies, which
means that the modulation waves have a relative velocity (named
convective velocity)Vg to the carrier waves. In our experiments,
the direction of the convective velocity points to the center of
the spiral waves. Table 1 gives the absolute values of the
velocities for different [H2SO4]. It shows an increasing tendency
with the increase of the parameter. Thus, the convective velocity

Figure 4. Development of chemical turbulence due to the Doppler instability.

Figure 5. Local wavelengths of the modulational spiral waves for
different [H2SO4] when [MA] ) 0.8: (a) 0.6 M, (b) 0.65 M, (c) 0.7
M, and (d) 0.75 M. The origins are set at the points of the centers of
the spiral waves, and squares correspond to the minimum or maximum
amplitudes of the modulational spiral waves in one radial direction.
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Vg is an efficient order parameter to distinguish a meandering
spiral from a modulation spiral in the case of the long
wavelength instability.

The movement of a molulational spiral tip induced by the
long wavelength instability is similar to that of a meandering
spiral. Thus we trace this movement on amplified images and
get flowerlike trajectories just as those appearing in the
meandering spiral.28 These flowers are plotted below images
of modulational spirals in Figure 6a-e. Figure 6a shows a spiral
and its tip trajectory near the onset of the long wavelength
instability ([H2SO4] ) 0.6 M). As [H2SO4] is increased, both
the number of petals and the size of the flower are increased.
One can see that all of them follow epicycloid motions with
outward petals, as illustrated in Figure 6f, where the primary
circle (radiusr1) orbits the secondary circle (radiusr2) with a
rotational frequencyf2 in one direction and spins about its center
with a spin frequencyf1 in the opposite direction. These two
frequencies,f1 and f2, correspond, respectively, toω1 and |ω1

- ω2| in the normal form analysis of Barkley19 on the
meandering spirals, whereω1 is the primary frequency of a spiral
and ω2 is the frequency of spiral modulation in the rotating
frame. Here we setf1 ) ω1/2π, and because of the epicycloid
motions, one can getω2 > ω1, thenf2 ) (ω2 - ω1)/2π.

We determinef1 by measuring the average frequency of spiral
waves far from the spiral center and obtainf2 from the relation
f1/f2 ) n, wheren is the number of the petals of the flowers.
The values of the primary frequencyf1 (or ω1) are considered
to be precise. But it is difficult to read the precise number of
the petalsn from the flowers; thus, we only give the approximate

integers, respectively 3, 4, 6, 7, and 11. Therefore, we can
approximately obtain the frequenciesf2 andω2 for different [H2-
SO4]. Notice that, due to the convective velocityVg (see Table
1), the frequencyf2 is different from that measured in Figure
3b. We plot the spiral modulation frequencyω2 for the long
wavelength instability in Figure 7. We find that there also exist
two types of dynamical behaviors of the modulational spiral
waves, separated by [H2SO4] ) 0.7 M, which coincides with
that shown in Figure 3. In the C1 region ([H2SO4] < 0.7), the
modulation period decreases with the increase of [H2SO4]; the
tendency is the same as in Figure 3. However, in the C2 region
([H2SO4] > 0.7 M), the two figures show different trends: the

Figure 6. Modulational spirals and the trajectories of their tip’s movements for different [H2SO4] when [MA] ) 0.8 M: (a) 0.6 M, (b) 0.65 M,
(c) 0.7 M, (d) 0.725 M, and (e) 0.8 M. Each trajectory is arranged below the corresponding image (11× 11 mm2 in size) of the modulational spiral.
(f) The typical epicycloid motion.

TABLE 1: Convective Velocity (Wg) Varies with [H 2SO4]

[H2SO4] (M) 0.6 0.65 0.7 0.725 0.8
Vg (mm/s) 1.42 1.43 1.49 1.57 1.78

Figure 7. Frequency of spiral modulationω2 as a function of [H2-
SO4].
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period in Figure 3 becomes larger with the increase of [H2-
SO4], while the period in Figure 7 decreases a little.

If one increases [H2SO4] in the C2 region, defects are
continuously generated. The spiral breakup occurs far away from
the center, and there exists a disk of ordered spiral pattern where
turbulence cannot invade, as shown in Figure 2d. The system
is thus separated into two different regimes: ordered spiral
waves inside the disk and chemical turbulence outside of the
disk. The size of the laminar disk decreases with the increase
of the control parameter. When [H2SO4] is above the C-T
boundary in the phase diagram (see Figure 1), the turbulence
state will invade the whole space, which is the case of absolute
instability.

Discussion

Two instabilities are observed in our experiments, the Doppler
instability and the long wavelength instability. The mechanism
of the former is clear and can be qualitatively compared with
numerical simulations,12 while the mechanism and the behavior
of the latter need more discussion.

Single spiral waves far away from the spiral tip can be
considered as planar wave trains in an oscillatory system. Near
the onset of a Hopf bifurcation, the system’s variable as a
function of timet can be written:c ) c0 + A exp(iωct) + c.c.
In a ferroin-catalyzed BZ reaction,c corresponds to the
concentration of ferroin;ωc is the Hopf frequency; andA is the
complex amplitude of oscillations, which obeys the complex
Ginzburg-Laudau equation (CGLE) in one dimension:

whereτ0 andê0 are respectively the characteristic time and the
correlation length of the system.g1, g2, d1, andd2 are related to
the diffusion coefficients and ensemble of reaction kinetics.
Using τ0 and ê0 as time and length units, after rescaling we
have

whereR ) d2/d1 andâ ) g2/g1 are control parameters. Equation
2 has traveling plane wave solutionsA0 ) F exp[i(qx - ωt)],
whereF ) 1 - q2 andω ) Rq + â(1 - q2). They exist forq2

< 1. To study the linear stability of the traveling waves, we
consider perturbation of the form

wherea(x,t) andφ(x,t) represent respectively the perturbations
to amplitude and phase of the traveling waves. Using the linear
stability analysis, we seek solutions of the forma0 exp(σt +
ipx) andφ0 exp(σt + ipx) and look for the dispersion relation
σ(p). Near the onset there is a long wavelength (p ∼ 0) critical
mode (σ(p) ∼ 0), which becomes a pure phase mode forp ∼ 0.
It is characterized by the following dispersion relation

where

WhenD| < 0, the so-called Eckhaus instability occurs.32,33 It
is the long wavelength instability, and because of a nonzeroVg,
it has a convective nature.30 Although the linear analysis shows
the unstable modep f 0, the selected modulational wavelength
by the nonlinear effect has a finite value for a system of large
enough size. In our system, the reaction medium is much larger
than the spiral wavelength (aspect ratio≈ 50). Therefore, from
our experimental results, the S-C boundary in the phase
diagram is possibly the onset of the Eckhaus instability.

Due to the complexity of reaction network in our system, it
is difficult to deduce the important values ofR andâ in eq 2.
Thus, quantitative comparison between our experimental results
and the theoretical analyses on CGLE cannot be fully made.
Sørenson et al.33 developed a good method, the quenching
technique, to calculate these values from experimental data. In
our experiment, however, since there are multiple concentration
gradients across the reaction medium, we do not know the
chemical compositions in the patterned layer. So their method
cannot be applied in this experiment. Another possibility is to
get these values from eq 3. If we knowVg andq at the onset of
the Eckhaus instability, we can deduce the values ofR andâ.
In the experiment, although we can measure all the physical
quantities of modulation and carrier waves, to get rescaled
values, we need to know the characteristic timeτ0 and the
correlation lengthê0, which in turn depend on the chemical
compositions of the system. Thus we have to settle for less
quantitative results.

Our experimental results show that a local modulation
saturates in time for a given control parameter; see Figure 6b,c.
However, due to the finite reactor size, we do not know whether
the amplitude of modulation can be saturated as a function of
space or if it is just a long-lived transient. Janiaud et al.31

analyzed the nonlinear behavior of phase modulationφ(x,t) near
the onset of the Eckhaus instability. Their analysis indicates
the existence of stable compression pulses in a certain domain
of parameters near the onset of the Eckhaus instability. These
pulses are possibly transient for the experimental parameters.
Our experiments in the finite reaction medium have shown a
similar result.

The generation of defects that we consider is induced by the
local wavelength being below the minimum value allowed by
the dispersion relation. However, our data show that, within
the experimental uncertainty, the amplitude of phase modulation
is not increasing along the distance from the center even beyond
the onset of the instability (see Figure 5d). Therefore, why the
generation of defects always takes place in a defined distance
from the spiral center is still unraveled.

The observation of two behaviors of modulation waves hints
that the major source of perturbations may be different in
different regimes. We postulate that near the onset of the
Eckhaus instability, perturbations mainly originate from the
spiral tip. Because of the linear instability, the perturbations
are quickly amplified as the spiral waves travels downstream
and then saturated by the nonlinear effects. When the system is
far beyond the Eckhaus instability, the amplitude of perturba-
tions becomes very large. These perturbations may in turn
influence the movement of spiral tips. A more satisfactory
theoretical explanation has to be developed.
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